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Ecography The ongoing decline of large marine vertebrates must be urgently mitigated, partic-
2022: 06158 ularly under increasing levels of climate change and other anthropogenic pressures.

- However, characterizing the connectivity among populations remains one of the great-
doi: 10.1111/ecog.06158 est challenges for the effective conservation of an increasing number of endangered

Subject Editor: Malin Pinsky species. Achieving conservation targets requires an understanding of which seascape
Editor-in-Chief: Miguel Aratjo features influence dispersal and subsequent genetic structure. This is particularly chal-
Accepted 2 March 2022 lenging for adult-disperser species, and when distribution-wide sampling is difficult.

Here, we developed a two-step modelling framework to investigate how seascape fea-
tures drive the genetic connectivity of marine species without larval dispersal, to better
guide the design of marine protected area networks and corridors. We applied this
framework to the endangered grey reef shark, Carcharhinus amblyrhynchos, a reef-asso-
ciated shark distributed across the tropical Indo-Pacific. In the first step, we developed
a seascape genomic approach based on isolation-by-resistance models involving circuit
theory applied to 515 shark samples, genotyped for 4991 nuclear single-nucleotide
polymorphisms. We show that deep oceanic areas act as strong barriers to dispersal,
while proximity to habitat facilitates dispersal. In the second step, we predicted the
resulting genetic differentiation across the entire distribution range of the species, pro-
viding both local and global-scale conservation units for future management guidance.
We found that grey reef shark populations are more fragmented than expected for such
a mobile species, raising concerns about the resilience of isolated populations under
high anthropogenic pressures. We recommend the use of this framework to identify
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barriers to gene flow and to help in the delineation of conservation units at different scales, together with its integration across

multiple species when considering marine spatial planning.
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Introduction

Marine ecosystems across the globe are under increasing
pressure due to habitat fragmentation, overexploitation and
climate change (McCauley et al. 2015, Young et al. 2016,
Albouy et al. 2020). Due to their conservative life-history
traits of low reproductive rates, high longevity and slow
growth, large marine vertebrates such as marine mammals,
seabirds and elasmobranchs are particularly vulnerable to
human-induced mortalities: their rate of extinction is indeed
higher due to fisheries (including bycatch), habitat distur-
bance and pollution (Estes et al. 2016, McClenachan et al.
2016, MacNeil et al. 2020, Yan et al. 2021). Their effec-
tive protection is an unprecedented challenge that must
be addressed in the coming decades (Duarte et al. 2020,
Sala et al. 2021).

The implementation of effective conservation measures
for large marine vertebrates requires that space use by these
potentially highly mobile species is taken into account
(Harrison et al. 2018, Jacoby et al. 2020), and to better under-
stand the factors driving connectivity among populations in
increasingly fragmented seascapes (McRae and Beier 2007,
Balbar and Metaxas 2019). Indeed, through the exchange
of genes, connectivity plays a vital role in maintaining
thriving natural populations (Cowen and Sponaugle 2009,
Jangjoo et al. 2016, Dunn et al. 2019), ensuring biodiversity
conservation and fisheries sustainability (Gaines et al. 2010,
Edgar et al. 2014, Krueck et al. 2017, Alvarez—Noriega et al.
2020).

Population connectivity of most marine animals depends
on a dispersive planktonic larval phase. This life-history stage
can last from days to months, and larval dispersal can be
modelled using biophysical or genetic frameworks (Bryan-
Brown et al. 2017, Manel et al. 2019, Harrison et al. 2020).
Genetic connectivity, a measure of the degree to which gene
flow affects evolutionary processes among populations, has
been widely studied among larval dispersers (Benestan et al.
2021), since gene flow plays a key role in maintaining genetic
diversity and healthy populations able to adapt to a chang-
ing environment (Slatkin 1987, Lowe and Allendorf 2010,
Song et al. 2013, Goetze et al. 2021).

In contrast, investigating the population or genetic con-
nectivity of species whose dispersal is realized by adults is
more challenging as adult connectivity cannot be modeled
using the same oceanographic models (Pazmifio et al. 2017,
Boissin et al. 2019, Pirog et al. 2019). Yet, the question of
which factors drive nektonic adult connectivity has received
less attention, while its knowledge is just as important for
those species relying on dispersal of larger individuals to
maintain connectivity (Momigliano et al. 2015). Indeed,
little is known about which habitat, environmental and

biogeographic features drive the connectivity among popu-
lations for adult dispersers across generations. Investigating
these factors can provide key information to properly design
corridors and networks of marine protected areas (MPAs)
(Almany et al. 2009, Magris et al. 2014, 2018, Balbar and
Metaxas 2019, Jacoby et al. 2020).

One approach to investigate the factors shaping genetic
connectivity among populations and identify subsequent
barriers to gene flow is the use of isolation-by-resistance
(IBR) models (McRae 2006). These models, popular in ter-
restrial ecology (Dickson et al. 2019), remain largely over-
looked in the marine realm (Selkoe et al. 2016). Unlike
isolation-by-distance (IBD) models, IBR models incorpo-
rate the effects of heterogeneous habitats on gene flow, thus
they can account for the effect of seascape features on the
genetic differentiation among populations and also make
predictions for sites that have not been sampled (McRae and
Beier 2007). A combination of large empirical genetic data-
sets and modelled genetic differentiation could therefore be
used to delineate conservation units (groupings of a species
which contain sufficient biodiversity for persistence through
subsequent generations) throughout the entire range of a
species.

Separating a species’ range into conservation units can
indeed identify key areas for dispersal along with populations
under potential threats (Allendorf et al. 2010, Funk et al.
2012, Barbosa et al. 2018). Although the definition of con-
servation units has been debated (Waples and Gaggiotti
20006, Palsbell et al. 2007, Lowe and Allendorf 2010), the
hierarchical delineation of population subdivisions, based on
genetic connectivity, can provide significant clues for both
local and global management strategies (Dilts et al. 2016,
Barbosa et al. 2018). Surprisingly, the degree of habitat
fragmentation and the subsequent delineation of conserva-
tion units are poorly investigated in threatened and mobile
marine species. Advances in genetic tools and computational
power (Schadt et al. 2010, Funk et al. 2012, Balkenhol et al.
2017, DiBattista et al. 2017, Barbosa et al. 2018) now permit
the development of models predicting how seascape features
shape connectivity over a large scale at high spatial resolution
(Leonard et al. 2017).

With no larval stage, the adult dispersion of sharks is of
high importance (Hirschfeld et al. 2021), and shark conser-
vation remains challenging with many species showing exten-
sive geographic ranges spanning several countries (Dulvy etal.
2017, 2021, Pacoureau et al. 2021). Additionally, most shark
species are highly vulnerable to fishing pressure given their
life history traits, e.g. slow growth, late sexual maturity and
low fecundity (Dulvy et al. 2014). Over one-third of chon-
drichthyans are threatened with extinction (International
Union for Conservation of Nature Red List; Dulvy et al.



2021), and some have undergone declines greater than
70% in abundance in the last few decades (Roff et al. 2018,
Pacoureau et al. 2021). The size of MPAs is known to be
a major driver of their protection effectiveness (Juhel et al.
2017,2019, Dwyer et al. 2020, Bonnin et al. 2021), however
these areas often only encompass a small proportion of each
population’s distribution.

Here, we focused on the grey reef shark Carcharhinus
amblyrhynchos as a model species to explore the potential
offered by seascape genetics for the characterization and
prediction of genetic connectivity of adult dispersers, the
identification of barriers and resistance to dispersal, and pos-
sible implications for the spatial delineation of conservation
units for management purposes. This species has strongly
declined in non-protected reefs close to human habitation
(Robbins et al. 2006, Juhel et al. 2017, 2019, Ruppert et al.
2017) and is now listed as Endangered on the IUCN Red
List. It shows a high level of residency and small home range
but adults can perform long-range movements (> 700 km)
along reefs and across oceanic waters (Espinoza et al. 2015a,
White et al. 2017, Bonnin et al. 2019, 2021).

We followed a two-step approach to investigate the genetic
connectivity of this near-threatened coral reef-associated
predator and delineate hierarchical conservation units based
on estimates of genetic connectivity. Firstly, we employed
IBR modelling and electrical circuit theory (CT) (McRae
2006, McRae et al. 2008) to determine how seascape fea-
tures shape the genetic differentiation of this species, using
an extensive genetic dataset of over 500 sharks collected in 17
locations across the Indian and Pacific oceans. We then used
this modelling framework to delineate hierarchical conserva-
tion units across the whole species distribution range (Indo-
Pacific), to better inform conservation strategies and identify
the most vulnerable populations.

Material and methods

Shark sampling and locations

We collected fin clips from 515 individual grey reef sharks
across 17 locations in the Indian and Pacific Oceans (Fig. 1).
Samples from the Indian Ocean (n=99), Indonesia (n=24)
and the Great Barrier Reef (n=48) were already described
and genotyped in a published study (Momigliano et al.
2017). The remaining samples (n=344) were collected in
the New Caledonian Archipelago, between June 2015 and
November 2016, using barbless circle hooks for mouth-
hooking and easy release after sampling. Sharks were caught
on single lines to reduce bycatch and minimize handling and
processing times.

Population genomics

We extracted DNA from fin clips using DNEasy Blood
and Tissue kit (QIAGEN) for the 344 samples from New
Caledonia. Each DNA solution was adjusted, after quality

control, to 12-15 pl at 50 ng pl™! prior to DNA sequenc-
ing at Diversity Arrays Technology Pty. Ltd (Canberra,
Australia), using DArTseq protocol (Sansaloni et al. 2011).
Post-extraction laboratory protocols and SNP calling and
filtering procedures used were the same as described in
Momigliano et al. (2017), except for filtration to remove loci
with minor allele frequencies, where we filtered SNPs for
MAF > 0.02 instead of 0.05, as sampling was extended to
numerous additional locations.

After combining these SNPs with those of a previous
study (Momigliano et al. 2017), outlier tests were used to
filter loci for which genetic differentiation (F;) is higher than
expected under neutral processes only. We applied a combi-
nation of two methods to identify and exclude from further
analyses these loci potentially under selection; OutFLANK
(Whitlock and Lotterhos 2015) and FLK, i.e. extensions of
the Lewontin—Krakauer test that accounts for population co-
ancestry (Bonhomme et al. 2010). To improve the detection
of outlier loci, we removed the Cocos and Chagos samples to
perform the OutFLANK and FLK tests. Those two sampling
populations are very remote and show great genetic differen-
tiation compared to the other populations.

Population structure

We applied a Bayesian unsupervised clustering method (fast-
STRUCTURE) to investigate genetic structure at neutral
loci (Raj et al. 2014). fastSTRUCTURE implements an effi-
cient algorithm for approximate inference of the admixture
model from STRUCTURE (Pritchard et al. 2000). We ran
fastSTRUCTURE with simple and logistic priors, at mul-
tiple numbers of clusters, K ranging from 1 to 10.

We also carried out discriminant analysis of principal
components (DAPC) using the R package adegenet, with
sampling location of each individual used as prior informa-
tion (Jombart et al. 2010) to investigate patterns of genetic
structure at neutral loci. The number of principal compo-
nents (PCs) to retain for DAPC analyses was determined
by cross-validation using a training set of 80% of the data
and we therefore retained the number of PCs for which the
obtained mean square error was the lowest.

Isolation-by-distance and isolation-by-resistance
models

The relationship between genetic distance at neutral SNP
loci (Fgp) and geographic distance, i.e. isolation-by-distance
(IBD), as well as isolation-by-resistance (IBR) patterns, were
investigated using multiple regression on distance matri-
ces (MRM; Lichstein 2007; Fig. 2 — step 1). First, pairwise
genetic distances between all locations (Weir and Cockerham
Fg;, Weir and Cockerham 1984) were calculated using the
R package diveRsity (Keenan et al. 2013). Pairwise shortest
geographic distances by sea between all locations were mea-
sured with the R package marmap (Pante and Simon-Bouhet
2013). IBR was then investigated, to check for further effects
of some seascape features (bathymetry, distance-to-habitat)



Figure 1. Maps of the 17 sampling locations where 515 grey reef shark samples were collected. (A) Global sampling locations (B) Detailed
sampling at the scale of the New Caledonian archipelago (EEZ outlined in grey). The number of individuals sampled for SNP analysis from

each location is in brackets.

on the dispersal of grey reef shark populations. IBR mod-
els assume a linear relationship between pairwise genetic
distance and pairwise resistance distance, a metric both tak-
ing into account geographic distance and landscape features
between locations (McRae and Beier 2007).

Furthermore, we used IBR models implementing electri-
cal circuit theory (CT) (McRae and Beier 2007, McRae et al.
2008), and tested their performance in explaining genetic
differentiation across our sampling locations of grey reef
sharks across the Indo-Pacific. This allowed us to explore
different biological hypotheses about gene dispersal for this
adult-disperser species. Methods based on CT allow the cal-
culation of a resistance distance between each pair of sampled
locations by simultaneously considering all possible pathways
connecting these locations, and ascribing resistance values to
each pathway.

Resistance maps

Resistance maps were generated in Python (gdal) with 10
km cells, based on different hypotheses. The spatial resolu-
tion of 10 km was arbitrarily chosen to allow a reasonable
computation time, and because grey reef sharks have shown
a high residency and relatively small home range of the same
order of magnitude (Espinoza et al. 2015a, White et al. 2017,
Bonnin et al. 2021). First, we produced a map with homo-
geneous resistance values across every cell to be used in a
‘CT null model’, corresponding to CT in a homogeneous
seascape. Then, bathymetry (GEBCO, gebco.net) and dis-
tance-to-habitat resistance maps were drawn separately and
in combination as seascape features potentially driving gene
flow. We included coral reefs (<www.data.unep-wcme.org>;
Spalding et al. 2001) and island nearshores as suitable habitats
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Figure 2. Conceptual framework of the two-step procedure of isolation-by-resistance models to produce conservation units based on simu-
lated locations. In step 1, numerous resistance maps are produced via the parametrization step described in the Supporting information,
then used as input in GFLOW;, resulting in one matrix of resistance distance per resistance map. For each map corresponding to one param-
eter set, resistance values are then linked by dyad to genetic distance values (linearized FST), and model robustness evaluated with the
regression coefficient (R?) obtained from a multiple regression on distance matrices (MRM). In step 2, GFLOW is run on simulated loca-
tions for grey reef sharks (Supporting information) with the resistance map corresponding to the best IBR model selected in step 1. The
output, a matrix of resistance distance between all simulated locations, is then converted to genetic distances based on the best IBR linear

model. The subsequent matrix of simulated genetic distance is then submitted to a density peaks clustering method described in Rodriguez
and Laio (2014).



for grey reef sharks (<www.earthworks.stanford.edu/catalog/
harvard-glb-volc>). Distance-to-habitat maps were calculated
with and without the inclusion of shallow seamounts as suit-
able habitats (Yesson et al. 2011), selected at a threshold of
280 m corresponding to the reported preferential depth for
this species (Last and Stevens 2009). Different types of rela-
tionships between seascape features and resistance were then
explored (Supporting information). Indeed, the grey reef
shark being a shallow reef-associated species, we hypothesized
that resistance to gene flow was likely to increase with dis-
tance-to-habitat and depth, and thus tested multiple values of
parameters for linear, logarithmic and exponential relation-
ships with minimum and maximum thresholds. Different
maximum resistance values were also used to calculate the set
of resistance maps to run through CT. Full details on resis-
tance maps parametrization are reported in the Supporting
information.

Pairwise distances using circuit theory

As shown in Fig. 2 — step 1, the set of obtained resistance
maps was then used as input for IBR models using GFLOW
(Leonard etal. 2017), an optimized version of the Circuitscape
software, estimating pairwise resistance distances between
sampling locations using circuit theory (McRae 2006,
McRae and Beier 2007). This batch of obtained pairwise
resistance distances between all locations and for every resis-
tance map was then correlated to pairwise genetic distances
(pairwise Fq; estimates linearized using the formula Fg /(1 —
F¢.); Fig. 2). As a resulg, in addition to the IBD and CT null
models, one IBR model was obtained for each resistance map
previously obtained.

Models were compared and the best model was chosen by
looking at a combination of R? values from multiple regres-
sion matrices (MRMs), Mantel tests (Mantel 1967) and
AICc (R package AICcmodavg). Because of the high correla-
tion between bathymetry and distance-to-habitat, tests like
partial Mantel (Smouse et al. 1986) and MRMs ran indepen-
dently on the two variables are not optimal (Legendre and
Fortin 2010, Peterman and Pope 2021). Univariate models
were optimized on one hand, representing the best correla-
tions between seascape features independently and genetic
distances. On the other hand, multivariate models account-
ing for both bathymetry and distance-to-habitat cumulated
in single resistance maps were also tested with multiple com-
binations of maximum resistance, relationship shapes and
associated parameters. More details on the general frame-
work, parametrization and model optimization are available
in Fig. 2 and the Supporting information.

Simulations

Locations with possible presence of grey reef sharks were
identified following the same criteria described before as
suitable habitat (excluding seamounts) and subsampled at
different scales (Froese et al. 2010). The first scale was at the

extent of our sampling locations, from the Cocos Keeling
Islands to the Eastern New Caledonian volcanic islands.
Locations with at least 50 km separation were randomly
chosen based on a Matérn process maximizing the number
of chosen points (Kiderlen and Horig 2013). This process
randomly selects points of suitable habitat, while incremen-
tally preventing adjacent habitat from being selected by
the algorithm at a given distance threshold. As a result, the
number of selected points varies each time such process is
applied. We applied it 1000 times and selected the result
with the highest number of points selected. Next, at the
scale of the entire distribution range of the species (tropi-
cal Indo-Pacific), including hypothetical presences only
based on habitat suitability (ranging between 32°E-130°W
longitude and 30°S-30°N latitude), further locations sepa-
rated by a distance of at least 100 km were randomly chosen
using the same method. Such distances between locations
were chosen to keep compurtation time reasonable. The
extent to which locations were randomly chosen was nar-
rower than the extent of the resistance maps used as input
from GFLOW. Indeed, the artificial boundaries created by
the edges of a map can have a non-negligible impact on
the calculations of landscape resistance to gene flow (Koen
et al. 2010).

The best CT model obtained with our optimization
framework, and thus the resistance map best explaining
genetic differentiation between the sampling locations, was
further used to run GFLOW on the randomly chosen loca-
tions (Fig. 2 — step 2). It allowed computation of pairwise
resistance distances between all possible locations for grey reef
shark presence previously selected with the Matérn process.
Such pairwise resistance distances were then converted to
pairwise genetic distances (predicted Weir and Cockerham
Fg), using the best relationship between distance matrices
obtained in the optimization step (i.e. from empirical data).

Clustering of subpopulations

The obtained dissimilarity matrices of genetic distances
were then subjected to the clustering procedure developed
by Rodriguez and Laio (2014) to delineate conservation
units (CUs) at both scales. Based on the automatic identi-
fication of local density peaks, this method allows the detec-
tion of clusters and outliers based on the distance between
data points. It is similar to density-based algorithms such as
DBSCAN (Ester et al. 1996), however it delineates clusters
without introducing a noise-signal cutoff, thus decreasing the
probability of low-density clusters being classified as noise
(Rodriguez and Laio 2014). The only variable parameter &,
(cutoff distance) was fixed so that the average number of
neighbors represents 5% of the total number of points in the
dataset (Rodriguez and Laio 2014, Du et al. 2016). Results
produced by this clustering method are very robust across
variation of this parameter, particularly on large-scale datasets
(Xu et al. 2020).



Results

OutFLANK and FLK tests identified 8 shared outlier loci,
that we excluded before further analyses, leaving a total of
4983 SNPs considered as neutral.

The discriminant analysis (DAPC) indicated that grey
reef shark populations could be split into four distinct
clusters (Fig. 3A-C), also identified by fastSTRUCTURE
(K=4 genetic clusters, Fig. 3D). This clustering revealed
greater differentiation between areas separated by large dis-
tances or deep waters (Fig. 3A—C). Sharks sampled at the
far remote Chagos showed greater genetic differentiation
compared to other sampling locations (Fig. 3A). This effect
was also observed in populations from the oceanic island
of Matthew on the New Hebrides Plate, and the Cocos
Keeling Islands, which are both isolated coral reef islands
separated by deep oceanic waters (Fig. 3B). The DAPC also
suggested that sharks from the remote reefs of Chesterfield
were more related to sharks from the Great Barrier Reef
(GBR) than to sharks from the rest of the New Caledonian
archipelago (Fig. 3C). Pairwise genetic distances (Weir
and Cockerham Fg; values) confirmed the patterns of

differentiation observed by DAPC and fastsSTRUCTURE
(Supporting information).

During model optimization, 618 resistance maps were
obtained when testing single parameter hypotheses (bathym-
etry or distance-to-habitat; with or without including sea-
mounts as suitable habitat). Likewise, a total of 93 632
resistance maps combining both seascape features in every
possible combination were obtained and used as input for
GFLOW.

Isolation-by-distance (IBD) calculated with linear geo-
graphic shortest distances between sampling locations
explained an important part of genetic differentiation
(R*=0.493), as well as IBD calculated with Circuit Theory
(GFLOW null model, pixels of value 1, R?=0.284), but
uncertainty and many outliers remained (Fig. 4). The dis-
tance-to-habitat- and bathymetry-based univariate models,
respectively a model with high resistance value when at more
than 200 km from any suitable habitat and a model with low
resistance at depths shallower than 2000 m, attaining very
high resistance values at depths below 4000 m, were highly
predictive (R*=0.952; Mantel=0.976; AICc=-904 and
R?=0.985; Mantel=0.992; AICc=-1041, respectively).
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Figure 3. Results from discriminant analysis of principal components (DAPC) performed on the set of 4983 filtered neutral SNP data
(excluding outliers) from all locations (A), all locations except Chagos (B) and locations in the Pacific Ocean including Eastern Australia
and New Caledonia except Matthew (C). Colors and inertia ellipses correspond to sampling locations. (D) Results from fastSTRUCTURE
using simple prior and 4 clusters. Samples from Chagos were included in this analysis.
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for the given resistance map. Brighter colors indicate higher current flow; (C) the subsequent linear relationships between pairwise resistance
distances obtained with GFLOW and linearized FST for every pair of locations. R?, Mantel statistic and AICc are indicated for each model.

The best model combining both bathymetry and distance-to-
habitat was even more predictive (R*=0.988; Mantel = 0.994;
AICc=-1070). This best model did not include seamounts
as suitable habitat and suggests that deep oceanic waters rep-
resent a strong barrier to dispersal. It also suggests that habitat
proximity of less than 50 km promotes gene flow (Supporting
information). This best model was selected despite the mod-
erate increase in R? compared to univariate models, as AAICc
>> 10 in both cases (AAICc=160 and 29 for distance-to
habitat and bathymetry respectively; Burnham et al. 2011),
suggesting support for the more complex model.

At the scale of the entire distribution range, the GFLOW
run using the best resistance map produced a matrix of 480

690 pairwise resistance distances between the 981 simulated
locations that were randomly selected across the Indo-Pacific,
separated by 100 km (Supporting information). Density
peaks clustering revealed a total of 38 conservation units
comprising > 2 locations, along with 202 isolated locations
(Fig. 5A). The widest unit was comprised of reefs and oce-
anic islands in the eastern part of the Indo-Australian plate,
along with the southeastern part of the Eurasian plate (Sunda
plate), while the western frontier of the unit delineated by
the Java Trench. Another wide unit connected reefs from
the Solomon and Bismarck plates, while remote islands in
the southern part of the Solomon Islands were connected
to Vanuatu. Interestingly, Tonga, Fiji, Wallis and Futuna, as



Figure 5. Resistance maps showing the delineation of conservation units (same color), and buffers of radius equal to (A) 100 km at the scale
of the whole distribution range of the grey reef shark and (B) 50 km at the scale of our sampling extent. Isolated units comprised of a single
location are shown in black with a smaller radius. The grey rectangle on (B) corresponds to the extent on which locations were simulated.
Color scale in the background corresponds to resistance values from the Supporting information, red corresponding to high values, blue to

low values.

well as the southern islands of Tuvalu formed a major unit in
the Western Pacific Ocean. Five distinct units encompassed
reefs from the Red Sea and the Oman Sea/Persian Gulf,
while the western coast of Madagascar and the Comoros,
including Mayotte, in the Mozambique Channel were part
of a single unit together with a wide section of the eastern
coast of Africa. The Seychelles formed a single unit, which
was also the case of Chagos. Another unit in the Indian plate
was composed of surrounding reefs in India and Sri Lanka,
the Laccadive Islands and the Maldives. Lastly, except from
some wide units comprised of archipelagos like for instance
the western part of Micronesia, or the Tuamotu archipelago
in French Polynesia which formed single units, reefs and oce-
anic islands from the Pacific plate were much fragmented,

with the largest proportion of small units and completely iso-
lated patches of habitat (e.g. Cocos Keeling Islands).

At the smaller scale of our sampling extent, GFLOW simi-
larly produced a matrix of 402 753 pairwise resistance dis-
tances between the 898 simulated locations separated by 50
km, randomly selected during the Matérn process (Supporting
information). Density peaks clustering revealed a total of 21
units (> 2 locations) at the scale of our sampling extent, along
with 81 isolated locations (Fig. 5B). At this scale, the single
unit comprising mostly reefs from the Indo-Australian plate
was fragmented into several conservation units. Noticeable
ones in terms of conservation comprised a western Australian
unit, a separate unit constituting the Rowley Shoals, while
western Indonesia and northwestern Australia were grouped



into a single unit, joined together by Scott Reef and Ashmore
and Cartier Islands. Eastern Indonesia and northern Australia
off the Northern Territory constituted another very close unit
with the east Timor Sea and Arafura Sea acting as corridors.
The GBR, along with reefs from the Coral Sea, was connected
to Papua New Guinea via the Torres Strait. Reefs from the
Bismarck Sea (northern Papua New Guinea) formed a single
unit, as well as most Solomon Islands reefs. Interestingly, the
Chesterfield Reefs, belonging to New Caledonia, formed a
unit by themselves. The rest of the New Caledonian archi-
pelago also formed a single unit, except Matthew and Hunter
Islands that were isolated on the far east side of the archi-
pelago, and the Petrie atoll, isolated in the north—east of the
main island. Further east, Vanuatu was separated from New
Caledonia by the New Hebrides Trench. Among the 81 iso-
lated locations identified by the clustering algorithm, Cocos
Keeling and Christmas Islands in the Indian ocean, reefs in
the Banda Sea (southeast Asia), Nauru, Tuvalu, Kiribati and
other remote islands of the Pacific, as well as remote reefs in

the Coral Sea were identified.

Discussion

Common approaches in landscape or seascape genetics usu-
ally focus on genetic connectivity per se and propose ad hoc
explanations based on coincident landscape features (McRae
and Beier 2007, Hirschfeld et al. 2021), therefore hinder-
ing the potential of genetic studies to inform conservation
planning. Conversely, this study is the first to date linking
fine-scale seascape and genetic connectivity of a species with
a priori testing of hypotheses, followed by predictions at the
entire range of a species. Here, with the development of an
analytical framework using a custom pipeline that could be
applied to a variety of different species and ecosystems, we
show its potential for the delineation of hierarchical conserva-
tion units at various scales for more targeted protection mea-
sures. Applying this methodology for multiple species could
provide key information for high resolution management
scenarios, particularly for the implementation of MPAs and
MPA networks of improved effectiveness (Momigliano et al.
2015). It provides a complementary approach to other mod-
elling frameworks based on movement data from individu-
als (Martin et al. 2020), and represents an efficient means to
predict large-scale conservation units.

Our results reveal that geographic distance is a poor pre-
dictor of the genetic structure of grey reef sharks. While
genetic and geographic distance are correlated (R?=0.493),
the explanatory power of this null model is low compared
to IBR models accounting for seascape features (best model
R?*=0.988). This is not surprising as two underlying assump-
tions of IBD are clearly unrealistic. The first and most impor-
tant assumption of IBD is that dispersal occurs through a
homogeneous seascape. Grey reef sharks are habitat special-
ists, being associated almost exclusively with coral reefs (par-
ticularly exposed outer slopes) and rocky shoals (Chin et al.
2010, Espinoza et al. 2014, White et al. 2017). Therefore,
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their dispersal is likely constrained by the availability of suit-
able habitats (Espinoza et al. 2015a, b). This is further sup-
ported by the distribution of clusters along the first two axes of
the DAPC (Fig. 3), displaying a hierarchical islands structure,
typical of a stepping stone model of dispersal (Jombart et al.
2010). Another assumption of IBD and more specifically
of least cost path (LCP) is that sharks use direct pathways
between locations. This assumption has been shown to bias
inference in many organisms (McRae and Beier 2007), and
in the case of grey reef sharks, there is scarce evidence of
direct long-distance migration pathways (Bonnin et al. 2019,
2021).

We show that the best model explaining the genetic dif-
ferentiation of grey reef sharks is one supported by CT and
with a very low resistance associated to waters at less than
50 km from optimal habitats, but with very high resistance
associated with deep oceanic waters acting as barriers to dis-
persal. As shown in the Supporting information, this model
combining both bathymetry and distance-to-habitat provides
improvements, particularly for deep areas close to suitable
habitat (e.g. volcanic island with a steep slope) and shallow
areas away from suitable habitat (e.g. shallow continental
slope). Although the majority of grey reef sharks have been
found to be highly resident, some individuals are known to
travel large distances across the open ocean (Espinoza et al.
2015a, White et al. 2017). Altogether, our results are congru-
ent with previous studies highlighting that large MPAs (> 50
km) could be effective for a substantive proportion of indi-
viduals (Edgar et al. 2014, Dwyer et al. 2020, MacNeil et al.
2020, Bonnin et al. 2021), even though a small number of
individuals may disperse further using contiguous habitat
patches as travel routes to avoid high resistance barriers such
as deep oceanic waters (Bonnin et al. 2019, 2021). We recog-
nize that expanding our modelling wider than the sampling
extent (i.e. the central Pacific) can be problematic, and we
call for extensive genetic sampling at a wider scale to confirm
these findings. Nevertheless, studies have yet to demonstrate
that sharks from unsampled regions have different dispersal
behaviors than the Indo-West-Pacific sharks sampled here.

Based on empirical evidence provided by genetic data,
our results prove that at a time scale of several generations,
a small number of sharks dispersing genes via migration
(Bonnin et al. 2021) may have a significant impact on the
global genetic structure of the species, and consequently in
maintaining standing genetic variation and inbreeding con-
nectivity (sufficient gene flow to avoid harmful effects of local
inbreeding, Lowe and Allendorf 2010) among and between
conservation units (CUs). There is, however, an important
consideration to be made: Fg; is a proxy of migration only
when populations are at migration-drift equilibrium. Given
the long generation time of grey reef sharks (16.4 years,
Robbins 20006), the young age of some of the sampled habi-
tats (like the GBR), and the evidence of recent population
expansions in other coral reef associated requiem sharks
(Maisano Delser et al. 2016, 2018), this assumption could be
considered as invalid. Assuming all populations have a recent
history, as in the closely related C. melanoprerus (Maisano



Delser et al. 2016, 2018), Fq; is still expected to be corre-
lated to Nym (effective migration rate), but defining CUs
using a cut-off based on Fg; may be misleading: if popula-
tions are not at migration-drift equilibrium, F¢;, may be much
lower than expected for a given N;m. A possible solution to
such limitation would be to estimate migration rates with-
out assuming equilibrium using the coalescent, or approxi-
mations of the coalescent, within an approximate Bayesian
computation or composite likelihood approach for parameter
estimation (Beaumont et al. 2002, Gutenkunst et al. 2009,
Excoflier et al. 2013, 2021, Jouganous et al. 2017). A frame-
work that incorporates IBR models and direct estimates of
migration rates based on coalescent simulations would be
a significant step forward in seascape genetics, potentially
enabling the estimation of much higher migration rates than
F¢-based methods, while taking into account the demo-
graphic history of all populations. There are however poten-
tial issues to consider. As Momigliano et al. (2021) recently
demonstrated, unaccounted demographic events may cause
strong biases in parameter estimation, although migration
rates are among the least affected demographic parameters.

During our model optimization, we used Fg; as the sole
metric of genetic differentiation. We could have used other
measures such as Jost’s D estimator (Jost et al. 2018), but
we found that Fg; and Jost’s D were highly correlated in our
dataset, especially as we did not include samples from Chagos
in the IBR framework (R*=0.999; Supporting information).

Protecting threatened mobile species requires a better
knowledge of habitat fragmentation and physical barriers
in the seascape (Hirschfeld et al. 2021). While the concept
of ‘populations’ is used to guide management policy, it cov-
ers multiple definitions (Waples and Gaggiotti 2006) but is
often approached by the identification of CUs (Funk et al.
2012). There are also various definitions of CUs in the scien-
tific literature, with a major distinction between evolution-
ary significant units (ESUs) and management units (MUs),
but there is a consensus on the fact that identifying CUs is
a crucial first step for the conservation of wild populations
(Funk et al. 2012, Barbosa et al. 2018). CUs are also recog-
nized as being hierarchical, with units at wider scale compris-
ing multiple smaller units (Funk et al. 2012, Barbosa et al.
2018, Weckworth et al. 2018). The investigation of local
genetic and demographic additional clues (i.e. genetic diver-
sity, N, relative abundance) might help to better delineate
units and take more appropriate management measures
(Domingues et al. 2017, Barbosa et al. 2018).

One of the important aspects of our results is that the
defined CUs, even at local scale, generally encompass
the exclusive economic zones (EEZs) of multiple coun-
tries. As such, conservative spatial planning would require
coordinated international efforts (Harrison et al. 2018,
Mackelworth et al. 2019). Moreover, slowing the ongoing
decline of natural populations of mobile species like sharks
requires not only scientific collaborations, but also support
from managers and policy-makers across borders (Dunn et al.
2019, Sequeira et al. 2019). A further issue impacting mobile
predators such as the grey reef shark is the fragmentation of

populations observed through a high proportion of putative
conservation units represented only by a single location of
suitable habitat. This highly fragmented pattern holds true for
the two hierarchical scales (81 of 103 units at the scale of our
sampling extent, 202 of 240 at the entire distribution range
of the species), knowing that the clustering algorithm used is
conservative in the number of detected outliers (Rodriguez
and Laio 2014). Special attention should thus be given by
managers to such isolated locations that deserve high conser-
vation priority, hosting populations potentially vulnerable to
anthropogenic pressures such as harvesting, with a low capac-
ity of rebuilding populations via migration and subject to
inbreeding depression for depleted populations (Kardos et al.
2018, Ralls et al. 2018).

Conclusions

We developed and used a predictive modelling framework to
infer barriers to gene flow and map the connectivity of grey
reef sharks across the Indo-Pacific. We provide novel insight
on the conservation of this marine predator by estimating
connectivity beyond sampled locations and by delineating
hierarchical conservation units. We conclude that the dis-
tribution and movement of grey reef sharks are reliant on
more than just geographical availability and demonstrate
the importance of using this framework for the integration
of genetic connectivity in the field of marine spatial plan-
ning. Our findings are not limited to grey reef sharks, and
this framework can be applied to any adult disperser species.
Hence, we call for the use of this approach to better under-
stand dispersal patterns of other marine species at different
scales. We recommend including such information along-
side ecological data, habitat use and governance of areas used
when considering management strategies, and even applying
this framework on multiple species as part of a systematic and
integrated conservation planning approach (Sala et al. 2021).
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